Q) If 1, ω , ω^2 , ω^3, ω^{n-1} are the n, n^{th} roots of unity, then $(1 - \omega) (1 - \omega^2)$ $(1 - \omega^{n-1}) =$ ______. ## **Solution:** Since 1, ω , ω^2 , ω^3, ω^{n-1} are the n, n^{th} roots of unity, therefore, we have the identity = $$(x - 1) (x - \omega) (x - \omega^2)$$ $(x - \omega^{n-1}) = x^n - 1$ or $(x - \omega) (x - \omega^2)$ $(x - \omega^{n-1}) = x^{n-1} / x - 1$ = $x^{n-1} + x^{n-2} + \dots + x + 1$ Putting x = 1 on both sides, we get $$(1 - \omega) (1 - \omega^2) \dots (1 - \omega^{n-1}) = n$$