Q) If 1, ω , ω^2 , ω^3, ω^{n-1} are the n, n^{th} roots of unity, then $(1 - \omega) (1 - \omega^2)$ $(1 - \omega^{n-1}) =$ ______.

Solution:

Since 1, ω , ω^2 , ω^3, ω^{n-1} are the n, n^{th} roots of unity, therefore, we have the identity

=
$$(x - 1) (x - \omega) (x - \omega^2)$$
 $(x - \omega^{n-1}) = x^n - 1$ or $(x - \omega) (x - \omega^2)$ $(x - \omega^{n-1}) = x^{n-1} / x - 1$
= $x^{n-1} + x^{n-2} + \dots + x + 1$

Putting x = 1 on both sides, we get

$$(1 - \omega) (1 - \omega^2) \dots (1 - \omega^{n-1}) = n$$